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A Wide-Band 12-GHz 12-Way Planar

Power Divider/Combiner

VICTOR FOUAD HANNA AND JEAN JUMEAU

Abstract —A 12-way, low-loss, wide-band planar electrically symmetric

hybrid power divider/combiner for the X-band is described. It is a

two-stage fork, 12-way hybrid realized completely in microstrip. A circnit

design is given to maximize the match and isolation at band center. Over a

frequency band of 10-13 GHz, this divider/combiner has an insertion loss

of less than 1 dB and an isolation between output ports of better than

17 dfk

I. INTRODUCTION

Symmetric n-way power dividers/combiners have the ad-

vantage of not having either amplitude or phase power-division

imbalance at all frequencies. Thus, they are used in many broad-

band applications such as in the feed system of multi-element

antennas and as combiners of solid-state amplifiers and oscilla-

tors.

Most of the dividers/combiners described in the literature

[1]–[4] are either generalizations or variations of the Wilkinson

[1] n-way divider/.ombiner. None of them can be renlizcd with

all interconnections in the circuit plane for n >2 because they

require either a resistive star network or a star of transmission

lines using multilayer construction. Consequently, planar di-

viders/combiners might be realized using corporate structures of

two-way Wilkinson split-tee [4] and hybrid circuits. The disad-

vantage of this approach is that the maximum value of n is
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Fig. 1. A schematic representation of the two-stage fork, 12-way planar

dnider/combiner.

limited by the physic~ size and high loss of the corporate

structure. The divider/combiner, which is realizable in a planar

structure, was first reported by Gabni and Temple [5] and it was

a single-stage fork, four- or seven-way hybrid. Explicit formulas

were developed by Saleh [6] for the scattering parameters of

single- and two-stage fork, n-way hybrids. Saleh’s [6] results show

that the two-stage case gives considerably better match and

isolation, and less dissipation requirements for the isolation resis-

tors than the corresponding single-stage case, but thes,e interest-

ing results were not confirmed experimentally.

This paper describes the circuit design and the performance

data of a 12-way planar hybrid power divider/combiner. ‘his

hybrid, which resembles the Wilkinson hybrid, is named the fork

hybrid because of its geometry. It consists of two stages, each of

12-way, realized completely in a znicrostrip technology.

11. CIRCUIT DESCRIPTION

A schematic diagram of the planar divider\combiner is shown

in Fig. 1, where 2, is the characteristic impedance of the input

line. The divided ports are designated by the numbers 1 through

12 and are each terminated in Zd. The characteristic impedance

of each of the quarter-wave lines is -Z. and the resistance of an

isolation resistor is R. The subscripts 1 and 2 refer to the first

and second stages, respectively. Optimum values of circuit ele-

ments are calculated on the bases of a perfectly matched port O at

the center frequency, a maximally flat input–output frequency

response [2], [3], and a maximum of both of the match and

isolation of the divided ports [6] at band center. For n =12, and

for a simple match of the divided ports to 50-L2 coaxiaf lines, Zd

is taken to be 50 f2, and the following optimal results are

obtained: RI = 500, R2 =166 L?, ZO,I =131.5 ~, Zo,z =69 fl,

and Z, =15.1 !2. The port O can be matched to a 50-f2 microstrip

line using two quarter-wave lines of impedances 20.5 and 36.9 L?.

111. EXPERIMENTAL RESULTS

The 12-way divider/combiner is realized in microstrip, em-

ploying a 0.254-mm-thick Duroid substrate (c, = 2.22). Chips

resistors of 50 and 166 L? are soldered according to the configura-

tion of Fig. 1. A photograph of the realized circuit is shown in

Fig. 2. The divider/combiner performance is measured in the

frequency band 10–14 GHz using a semi-automatic network

analyzer. The average power division coefficient of the 12 output

ports is plotted versus frequency in Fig. 3. The power imbalance

over the output ports is + 0.45 dB in the frequency band 10–13

GHz and + 0.8 dB in the frequency band 10–14 GHz. Isolation

coefficients between output ports have also been measured. The
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Fig. 2. Photograph of the realized 12-way X-band planqr powel

divider/combiner.
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Fig. 4. Isolation between output ports on the 12-way planar power

divider/combiner.(a) Ports 3-4,3-5,3-6, and 3-7. (b) Ports 3-8,3-9,3-10,

and 3-11.

Fig. 3. Measured transmission loss from theinput (common) port to one of

the output (divided) ports of the 12-way planar power divider/combiner.

‘l!!:innP

minimum registered isolation between output ports is 17 dB. This

result agrees very well with the analytic prediction of a minimum

isolation of 16 dB at the center frequency. Examples of the

results of the measurements of the isolation coefficients of this

power divider/combiner are presented in Fig. 4.

Fig. 5 shows the return loss of an input port and a typical % s

output port of this network. These last results are not in good

accordance with the analytical prediction of a minimum return

loss of 16 dB. This is probably either a result of the coupling

between the fork transmission lines [7] or a result of the effect of

the microstrip-coaxial-line transition, which was not taken into ~11

consideration in the theoretical calculations. The use of external

ferrite components will be necessary to obtain a sufficiently good 121

input and output match. [3]

IV. CONCLUSION
[4]

A 12-way planar electrically symmetric two-stage fork hybrid
power divider/combiner for a 12-GHz center frequency is real- 151
ized. It shows low insertion loss and excellent isolation properties [6]
over wide bandwidth. This makes it suitable for applications such
as the power combining of solid-state amplifier modules and also

[7]
for phased array antennas.

;=
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Return loss of both input (common) port and a typical output
(divided) port on the 12-way power divider/combiner.
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