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A Wide-Band 12-GHz 12-Way Planar
Power Divider /Combiner

VICTOR FOUAD HANNA anp JEAN JUMEAU

Abstract —A 12-way, low-loss, wide-band planar electrically symmetric
hybrid power divider/combiner for the X-band is described. It is a
two-stage fork, 12-way hybrid realized completely in microstrip. A circuit
design is given to maximize the match and isolation at band center. Over a
frequency band of 10-13 GHz, this divider /combiner has an insertion loss
of less than 1 dB and an isolation between output ports of better than
17 dB.

I. INTRODUCTION

Symmetric n-way power dividers/combiners have the ad-
vantage of not having either amplitude or phase power-division
imbalance at all frequencies. Thus, they are used in many broad-
band applications such as in the feed system of multi-element
antennas and as combiners of solid-state amplifiers and oscilla-
tors.

Most of the dividers/combiners described in the literature
[1]-[4] are either generalizations or variations of the Wilkinson
[1] #-way divider/combiner. None of them can be realized with
all interconnections in the circuit plane for n> 2 because they
require either a resistive star network or a star of transmission
lines using multilayer construction. Consequently, planar di-
viders /combiners might be realized using corporate structures of
two-way Wilkinson split-tee [4] and hybrid circuits. The disad-
vantage of this approach is that the maximum value of n is
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A schematic representation of the two-stage fork, 12-way planar
divider /combiner.

Fig. 1.

limited by the physical size and high loss of the corporate
structure. The divider/combiner, which is realizable in a planar
structure, was first reported by Galani and Temple [5] and it was
a single-stage fork, four- or seven-way hybrid. Explicit formulas
were developed by Saleh [6] for the scattering parameters of
single- and two-stage fork, n-way hybrids. Saleh’s [6] results show
that the two-stage case gives considerably better match and
isolation, and less dissipation requirements for the isolation resis-
tors than the corresponding single-stage case, but these interest-
ing results were not confirmed experimentally.

This paper describes the circuit design and the performance
data of a 12-way planar hybrid power divider/combiner. This
hybrid, which resembles the Wilkinson hybrid, is named the fork
hybrid because of its geometry. It consists of two stages, each of
12-way, realized completely in a microstrip technology.

II. CircuiT DESCRIPTION

A schematic diagram of the planar divider/combiner is shown
in Fig. 1, where Z_ is the characteristic impedance of the input
line. The divided ports are designated by the numbers 1 through
12 and are each terminated in Z,. The characteristic impedance
of each of the quarter-wave lines is Z, and the resistance of an
isolation resistor is R. The subscripts 1 and 2 refer to the first
and second stages, respectively. Optimum values of circuit ele-
ments are calculated on the bases of a perfectly matched port 0 at
the center frequency, a maximally flat input-output frequency
response [2], [3], and a maximum of both of the match and
isolation of the divided ports [6] at band center. For n =12, and
for a simple match of the divided ports to 50-Q coaxial lines, Z,
is taken to be 50 &, and the following optimal results are
obtained: R, =508, R, =166 Q, Z,,=1315 Q, Z,,=69 Q,
and Z, =15.1 Q. The port 0 can be matched to a 50-Q microstrip
line using two quarter-wave lines of impedances 20.5 and 36.9 Q.

IIL

The 12-way divider/combiner is realized in microstrip, em-
ploying a 0.254-mm-thick Duroid substrate (¢, =2.22). Chips
resistors of 50 and 166 { are soldered according to the configura-
tion of Fig. 1. A photograph of the realized circuit is shown in
Fig. 2. The divider/combiner performance is measured in the
frequency band 10-14 GHz using a semi-automatic network
analyzer. The average power division coefficient of the 12 output
ports is plotted versus frequency in Fig. 3. The power imbalance
over the output ports is +0.45 dB in the frequency band 10-13
GHz and +0.8 dB in the frequency band 10-14 GHz. Isolation
coefficients between output ports have also been measured. The

ExpErRIMENTAL RESULTS
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. 2. Photograph of the realized 12-way X-band planar power

Fig,
divider/combiner.
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Fig. 3. Measured transmission loss from the input (common) port to one of
the output (divided) ports of the 12-way planar power divider/combiner.

minimum registered isolation between output ports is 17'dB. This
result agrees very well with the analytic prediction of a minimum
isolation of 16 dB at the center frequency. Examples of the
results of the measuréments of the isolation coefficients of this
power divider/combiner are presented in Fig. 4.

Fig. 5 shows the return loss of an input port and a typical
_ output port of this network. These last results are not in good
accordance with the analytical prediction of a minimum return
loss of 16 dB. This is probably either a result of the coupling
between the fork transmission lines [7] or a result of the effect of
the microstrip~coaxial-line transition, which was not taken into
consideration in the theoretical calculations. The use of external

fetrite components will be necessary to obtain a sufficiently good

input and output match.

IV. CONCLUSION

A 12-way planar electrically symmetric two-stage fork hybrid
power divider/combiner for a 12-GHz center frequency is real-
ized. It shows low insertion loss and excellent isolation properties
over wide bandwidth, This makes it suitable for applications such
as the power combining of solid-state amplifier modules and also
for phased array antennas.

Fig. 4.
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Isolation between output ports on the 12-way planar power

divider/combiner.(a) Ports 3-4, 3-5, 3~6; and 3-7. (b) Ports 3-8, 3-9, 3-10,
and 3-11. ’ '

Fig. 5.
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